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The asymptotic stability and instability of the trivial solution of a functional-differential equation of delay type relative to part
of the variables are investigated using limit equations and a Lyapunov function whose derivative is sign-definite. The theorems
thus obtained are used to solve the problem of stabilizing mechanical control systems with delayed feedback. As examples, solutions
of problems of the uniaxial and triaxial stabilization of the rotational motion of a rigid body with a delay in the control system
are presented. © 1999 Elsevier Science Ltd. All rights reserved.

1. BASIC DEFINITIONS. LIMIT EQUATIONS.

Suppose R™ and R? are linear real spaces of m- and p-vectors with norms |y| and |z|, R" is the linear
real space of n-vectors X = (x;, X, - - -, X5) = (V1 Y2 - - s Yms 215 225 - -+ » Zp) = (¥, 2) With norm [x| =
|y| + |z|,n = m + p, h > 0is a real number and C™ is the Banach space of continuous functions
¢: [-h, 0] > R" with norm || ¢ = sup (J¢(s)], -h < s < 0), Ccim = {eg) € cm . legll <H< + o},
cim = {ey) c™ | @@l <1} (and similarly for C ®), Put ¢ = (€ @())- For a continuous function
X : 0, +oo[ — R and every ¢ e R, the function x, ¢ C® is defined by the equality x,(s) = x(t + s) for
h=<s<0(.
Consider the following functional-differential equation with finite delay

x(t)=f(@,x,), £(,0)=0 (1.1)

where f:R* xA >R A= C,(,m) x C? is a continuous mapping satisfying the z-continuability condition
for solutions of Eq. (1.1), that is: each solution of Eq. (1.1) x = x(t, a, @) = X,(0, ¢) = ¢ is defined
for allz = a such that | y (¢, a, ¢) | < H; < H. This condition means that none of the coordinates z;(¢, o, ¢)
will depart to infinity in a finite time [1].

Let us assume that the right-hand side of (1.1) also satisfies the following assumptions.

Assumption 1.1. For every pairr, 1,0 < r < H,[ > 0,an M = M(r, ]) exists such that for (¢, ¢) € R*
xC,xC,

f¢ @) <M (1.2)

With this assumption, we can prove the following lemma |2, 3].

Lemma 1.1. Suppose Assumption 1.1 is satisfied and let x = x(¢, o, ¢) be a solution of Eq. (1.1), defined
and bounded for all ¢ = a — h. Then the family of functions {x,(a, ¢) : ¢ = a} is precompact.

Assumption 1.2. The function f(t, ¢) satisfies a Lipschitz condition as a function of ¢ in any compact
set K C A, that is, an / = I(K) exists such that, for any ¢, ¢; € K

61, ¢2) — (1, 1)l < [ i@y — @yl (1.3)

Under this condition, a solution of Eq. (1.1) exists for any initial point (o, ¢) € R* x Ax = x(¢, o, @),
and it is unique and continuous with respect to the initial data [4].

Assumption 1.3. The function f(¢, ¢) is uniformly continuous over any set R* x K, where K C A is
an arbitrary compact subset of A, so that VK C A, Ve > 0 3m = m(K), 38 = 3(¢, K) > 0 such that
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YV (t, @1), (t, @2) € R* x K, |t -1, < 8, || ¢, — ¢, ]| 8, the following relation holds
(2, 2) — f(11.001)l < €

Under these conditions, Eq. (1.1) is precompact in some space F of continuous functions f: R* x ' —
R", where I is some subset of A that contains {x,(a, ¢), ¢ € A, t = a + h} for every solution x =

x(t, a, ¢) of (1.1) [3].

Definition 1.1. A function f* : R* x I’ - R" is said to be a limit function for f if a sequence t, — +oo
exists such that {f(t + ¢, ¢)} is uniformly convergent to f*(¢, ¢) in F. The equation

x(0)=£"(t,x,) (1.4)

is called a limit equation for (1.1).
The relationship between the solutions of Eqs (1.1) and (1.4) is established by the following theorem
{2, 3.

Theorem 1.1. Let f* : R* x I' — R" be a limit function for fin F relative to a sequence t, — +oo, and
let {a, € R*} and {¢, € '} be sequences such that a,, - a. € R, ¢, € ' as n — . Then, if x = x(,
ty + 0y, ¢,) is a solution of Eq. (1.1) and x*(¢, a, ¢) is a solution of the equation x(¢) = f*(¢, x,) defined
for t € [a — A, B[, the sequence of functions x(¢, + ¢, ¢, + a,, ¢,) converges to x*(¢, a, ¢) uniformly in
t € [o — h, y] for every y < B.

2. ASYMPTOTIC STABILITY AND INSTABILITY THEOREMS
RELATIVE TO PART OF THE VARIABLES, ON THE ASSUMPTION
THAT THE SOLUTIONS ARE BOUNDED AS FUNCTIONS OF
THE NON-CONTROLLABLE COORDINATES

We will investigate the problem of the stability of Eq. (1.1) relative to part of the variables (xy, . . .,
Xm) = (V15 - - - » ¥m), Using limit equations and limit functions.

Let V(t, ¢) : R* x A — R be some functional defined and jointly continuous with respect to all
its arguments [3]. Let x = x(¢, o, ¢) be some solution of Eq. (1.1) defined for all ¢t = a — . Then, putting
V(t) = V(t, x{(c, ¢)), we can define the upper right-hand derivative

V(o, @)= lim sup -l—(V(a +h) - V(o))
h—0* h
Let us assume that the derivative V'satisfies the following estimate

V(t,@)<-W(t,@)<0, V(,9)eRXA

where the continuous function W = W(t, ¢) is bounded and uniformly continuous on every set
R* x K, where K is a compact subset of A.

Definition 2.1. Let t,, — +o be some sequence. For eacht € R and ¢ € R, we define aset V;'(t,c) C A
as follows: the point ¢ € V,,"\(t, c) if a sequence {¢, € T, ¢, — @} exists such that lim,_, .V (¢ + t,,
On) = C.

As in the case of f(t, ), subject to the appropriate condition for W(, ¢), the family of translates {W"(s,
@), T € R*} is precompact in a certain functional space of continuous functionals F = {G: R xT' —> R}
with metrizable compact open topology.

Definition 2.2. A functional W* e Fg; is called a limit functional for W if a sequence ¢, - +oo exists
such that {W®(t, @) = W(t, + 1, @)} converges to W*(t, ) in F. When that is the case, the set V;'(t, ¢)
defined by the same sequence #, — + is defined as that corresponding to W*,

Let x = x(t, o, ¢) be a solution of Eq. (1.1) defined for all t = a - &, x,™(a, @) = x(t,, + 5, o, @)
(-h < s < 0). The positive limit set Q*(x,(a, ¢)) in the space Cy is the set Q* = {¢* € Cy: A, —
+o,n — 0, X0, @) > ¢* as n — o}

The following results of the localization Q™ (x(a., ¢)) exist, easily deducible from [2, 3].

Theorem 2.1. Suppose that
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1. V(t, ¢) : R* x A - R is a continuous functional, having a lower bound in every compact set K C
A, that is, V(t, @) = m(K) Y(t, ¢) € R* x K, and for its derivative we have

V(t,@)<-W(1,¢)<0, V(t,@)e R xA

2.x = x(t, a, @) is a solution of Eq. (1.1) such that | y(t, o, @) | <t < H, | 2(t, a @) | <17 < +o for
allt = o —h.

Then ¢ = ¢y = m exists such that, for every limit point ¢* € Q" (x(a, ¢)), a limit pair (f*, W*)
with V(¢ ¢) and a solution x*(t, 0, ¢*) of the equation x(f) = f*(t, x,) exist such that {x*(0, ¢*) : t e
R} C Q" (x(a, ¢)) and {x*(0, ¢*) : t € R} C {V,'(t,¢) : ¢ = ¢y = const} N {W*(t, ) = 0}.

Corollary 2.1. If, under the conditions of Theorem 2.1, it is also assumed that for every ¢y > ¢ a
certain limit pair (£*, W*) with V,,”'(¢, ¢) exists such that the set {V,;'(z, ¢): ¢ = ¢o = const > ¢,} N
{W*(t, ¢) = 0} does not contain solutions of the equation x(¢) = £*(¢, x,), then, in addition to the assertion
of Theorem 2.1, it is also true that

lim V(,x,(0,¢)) = ¢y = const=<c,.
t—y+oo

These results enable us to prove the following theorems, in which m: R* — R is a Hahn-type function

[

Theorem 2.2. Suppose that:

1. the solutions of Eq. (1.1) in some neighbourhood N of the point x = 0 are bounded as functions
of z;

2. a continuous functional : R* x A - R" exists such that

V(£,0)=0, V(1,0)=0,( ¢ (0)), V(t@)<-W(,¢)<0

for all (¢, @) € R* x A

3. for every limit pair (f*, W*) with set V5'(t, ¢), the set {V/,;'(¢, ¢) : ¢ = const = 0} N {W*(t, @) =
0} does not contain solutions of the equation x(f) = f*(¢, x,) other than the solutions x = x(¢) = (y(¢),
z(?)) such thaty = 0.

Then the solution x = 0 of Eq. (1.1) is asymptotically y-stable.

Proof. Condition 2 of the theorem implies that the trivial solution of Eq. (1.1) is y-stable [5].
Consequently, for every number Hy < H a 8 = §(H; a) > 0 exists such that if | ¢|| =< §, then |y | (¢, a,
¢)| < H,, Vt = o. Hence, by Condition 1 of the theorem, it follows that every solution x = x(z, o, ¢)
of Eq. (1.1) in the neighbourhood N N {|| x || < 3} will be such that

ly(t, o, @) I<H, < H, 12(t,0, @) kI < oo, \F=Tvi

Then, applying Theorem 2.1, we deduce from Conditions 2 and 3 that lim,_, , (¢, o, ¢) = 0. The
theorem is proved. ,
Using Corollary 2.1, we prove the following.

Theorem 2.3. Suppose that:

1. Conditions 1 and 2 of Theorem 2.2 are satisfied;

2. a limit pair (f*, W*) with set VJ'(z, c) exists such that, for every c, > 0, the set {V,;'(t,¢) : ¢ =
¢y = const > 0} N {W*(t, ¢) = 0} does not contain solutions of the equation x(t) = f*(¢, x,).

Then the solution x = 0 of Eq. (1.1) is y-stable uniformly in ¢.

Proof. As in the proof of Theorem 2.2, we can deduce that for every solution x = x(¢, a, ¢) of Eq.
(1.1) defined for all ¢ < o in the neighbourhood N N {|| x || < &}, it is true that | y(¢, o, ¢) | = r < H,
{z(t, o, @) |=< [ < +0, VI = .

It now follows from Condition 2 of the theorem, according to Corollary 2.1, that along every solution
x(t, a, ¢) in the domain N N {|| x || <8} we have: V{1, x, (o, ¢)) decreases monotonically and tends to
zero ast — +o,

Suppose the domain A; C A is contained in the stability domain of x = 0 for an arbitrarily given
a = 0. Let p > 0 be an arbitrarily small number. It can be shown, on the basis of Assumption 1.1, that
the set K(a, a + h) = {xq4x(0, @) : ¢ € A} is compact. The property V(t, x(c, ¢)) > 0, t — +x, the
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continuity of " and the continuous dependence of the solutions on the initial data imply the existence
of a number T = T(g, a + &) > 0 such that

Va+h+T, xg p7(0+h@)) < (€)

for all ¢ € K(a, a + /). Consequently, it follows from the definition of the set K(a, a + k) and Condition
1 of the theorem that, for allt = o + h + T, ¢ e A, we have Vit x(a, @) < o(e). Thus y,(a, @) | < &,
Vt = a. The theorem is proved.

Theorem 2.4. Suppose that:

1. the solutions of Eq. (1.1) in some neighbourhood N of the point x = 0 are stable relative to z;

2. a continuous functional V' : R* x A — [-m, +), having a lower band, exists which, in any small
neighbourhood of x = 0, takes negative values such that

V(@1,0)=0, V(,@)<-W(t,¢)<0

forallt e R, ¢ € A;

3. for every ¢y < 0 a limit pair (£*, W*) with set V;'(z, ¢) exists such that the set Vot ©): ¢ = ¢y}
N {W*(t, ¢) = 0} does-not contain solutions of the equation x(f) = f*(t, x,).

Then the solution x = 0 of Eq. (1.1) is y-stable.

Proof. Let x = x(t, a, ¢) be a solution of Eq. (1.1) with initial point (a, ¢), ¢ € N, V(a, ¢) < 0. We
will show that the solution x(¢, a, ¢) is such that, for any H;, 0 < H; < H, a t* > a exists for which
Iy(t*: Qa, ‘P) | = Hl'

Suppose the contrary: for the given solution, | y(¢, a, ¢) | < H, for all 1 = . Then, by Condition 1
of the theorem, | z(¢, a, ¢) | <! < +c0. By Condition 2, a number ¢, < 0 exists such that lim,_,., W,
x(a, ¢)) = ¢o < 0. By Theorem 2.1, a solution x*(f) C Q*(x(a, ¢)) of the equation x(r) = f*(t, x,)
exists a solution such that

X (V') ie=c) n{W (1, ¢)=0}, VreR
This contradicts Condition 2, proving the theorem.

Theorem 2.5. Suppose that

1. the solutions of Eq. (1.1) in some neighbourhood N of the point x = 0 are uniformly bounded
with respect to z;

2. a continuous functional V': R* x A — R* exists, bounded and uniformly continuous in every set
R* x K (K C A a compact set), such that

@, (1 @, () D=V, @)<w,(l @ ll), V(2,0)=0
V(t,@)s-W(t,@)<0, (t,¢)e R* x A

3. every limit triple (f*, V*, W*) is such that the set {V*(t, ¢) = ¢ > 0} N {W*(t, ¢) = 0} does not
contain solutions of the equation x(¢) = f*(z, x,).
Then the solution x = 0 of Eq. (1.1) is uniformly asymptotically y-stable.

Proof. 1t follows from Condition 2 of the theorem that the trivial solution of Eq. (1.1) is uniformly
y-stable [4]. Under those conditions, every solution x = x(t, &, ¢) of Eq. (1.1) in the domain A, =
{ll ¢ || < Hy = 03" (o(H,)), H; < H} is bounded as a function of y, thatis | y(t, o ¢) | < H, < H for
allz = a. It follows from Condition 1 of the theorem that the solutions of Eq. (1.1) in the neighbourhood
Ny = N N Aq of the point x = 0 are such that

ly(t,o, @) < H, < H,1z(t,0, @) Il < oo, V=01

As in Theorem 2.3, one deduces that, along every solution x = x(¢, a, ¢) in Ny, the functional
V¢, x(a., ¢)) decreases monotonically, tending to zero as t — +oo.

We will show that V(t, x,(a, ¢)) as t — +oo uniformly with respect to (a, ¢) € R x Ny, This property,
as follows from Condition 2 of the theorem, will be sufficient to complete the proof.

Suppose the contrary, namely: gy > 0 exists such that, for an arbitrary sequence ¢, — +oo, there is
sequence (o, ¢;) € R™ x Ny for which
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V(o +t, Xg, 4, (04 €4 ))>Eg
Under these conditions, obviously, the following inequality is true for ¢ € [oy, oy + #]

V(i x, (0. 9,))=E 2.1)

Define B, = oy + #,/2. We may assume, without loss of generality, that the sequences {fO(t, ¢) =
f(Be + 1, @)}, {VO(t, @)}, (WH(t, @)} converge to (¢, @), V*(t, ©), W*(t, @), respectively. By Theorem
1.1, the sequence x(Bx + ¢, By, W), b = xp, (o, ¢x) converges uniformly in ¢ € [0, T] to a solution
x* = x*(t, 0, ) of the equation x(¢t) = £*(¢, x,).

By (2.1), I*(¢, o) satisfies the estimate

V(X (1,0,4)) = €4 >0 (2.2)

forallt =0, e Cy x C2.
On the other hand, it follows from Condition 2 of the theorem that

148

k
V(E+B.x,., Bi b )= VB, xp, Brebe))=- ﬁj W(s, x, (B, )ds =

!
==[ W(s+By Xsup, Brrb))ds <0, 120
(1]
Letting k —» +oo in the last relationship, we obtain
! » *
VX 0,4) -V O, =< -[ W (s,x,0,¥))ds<0
1]

Hence it follows that the function V*(¢, ¢) decreases monotonically along the solution x* = x*(¢, 0,
¥) of the equation x = f*(¢, x;) at the same time satisfying inequality (2.1).

It follows from Condition 3 of the theorem that every limit triple for (f*, 1*, W*), say (f**, 1**, W**),
is such that the set {V**(¢, ¢) = ¢ = const > 0} N {W**(¢, ¢) = 0} does not contain solutions of the
equation x = f**(z, x,). Consequently, V*(t, x¥(0, ¥s)) decreases monotonically, tending to zero as
t — +oo. This contradicts inequality (2.2), which proves the theorem.

The results of this section develop and generalize the results of {1-11].

3. STABILIZATION OF MECHANICAL CONTROL SYSTEMS
Consider a mechanical control system obeying holonomic stationary constraints and described by n

generalized coordinates gy, . . ., g,, Which are subject to dissipative forces in addition to control forces
u = (uy, Uy, . . ., U,), so that the motion of the system is described by the equations
d(oT) or no ( 12 . J
| = |-5—=ui~ X f4;0) | T=5 2 a;(9)d4; 3.1
d;(aq,.) dg; Z’n Ty 2ia 7 ! (3-1)

where T is the kinetic energy of the system and || f || is a positive-definite matrix.

We will consider the problem of stabilizing the equilibrium position 4 = q = 0 of system (3.1) with
respect to the coordinates, assuming the presence of delayed feedback. We will show that this problem
is solved by a control u of the form

él'_l_
dg;

where IT = Il(q) is a positive-definite function such that

(q] (t -h (t))’-"v 4n (t = Tin (t)) (32)

U, =-

an

2
aq,) = o(qf)

1©)=0, ¥ (

i=]

the functions r;(f) are bounded, 0 < r; < h, and uniformly continuous for ¢ € R*.
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A limit system for (3.1) has the analogous form

d(oT) or  dNl . . LA
?17[53,—] - 'a-q'l' = "5;'_'(‘11 =1 (O)s gt =1 (1)) - ]E:l f4;(® (3.3)

ﬁc;t us assume that || f || is a positive-definite matrix. Let p be the least eigenvalue of the matrix || fl,
and let

2
d B
hn

€y = max
i

99,99 I

We take the following Lyapunov functional

00 p
Vit.d109) = T@ O Gy + T Orn@y @D+ [ [ S Sy 04000+ s
~-h 5 Lj=

This functional will obviously satisfy the conditions

@, (1 g )+ 0,1 q() )< V < @ (g, ) + 0, (a, ]

For the derivative V we obtain the estimate

0 n
V(na,.q)<-| % 21 (% - con)(q,? (O+4¢2e+ s))ds <0 (3.4)
-h £i=

We put the functional W{t, q,) equal to the quantity between the inequality signs in (3.4). Then the
set {W*(t, q,) = 0} = {q(r) = 0}.

Substituting q = 0 into Eq. (3.3), we deduce that the set {W*(¢, q,) = 0} does not contain solutions
of Eq. (3.3) other than q = q = 0.

Using Theorem 2.5, we see that the control (3.2) stabilizes the equilibrium position 4 = q = 0, ensuring
uniform asymptotic stability.

In a similar way, it can be shown that if g,,4,, . . . , g, are angular coordinates (mod 2n), then the
control (3.2), where I1 = II(q) is a positive-definite function of ¢,, . . ., g,, and

n an 2 m
nE)=03, [5—] = _)_:lq.?]

i=l i

stabilizes the equilibrium position 4 = q = Orelative to gy, . . . , m q1, - - - » G-
These results develop those obtained in [9, 12, 13].

4. EXAMPLES

Synthesis of a control torque ensuring asymptotic stability of a given triaxial orientation of a rigid body, with variable
moments of inertia, rotating about a fixed point

Let OXYZ be a fixed reference system and let Oxyz be a reference system rigidly attached to the body, where
the axes Ox, Oy and Oz maintain fixed directions in the body and are chosen from the problem of the orientation
of Oxyz relative to OXYZ. Rotational motion of the body about its centre of mass may be described by the Euler
dynamical equations

(iw)+wxlw=M 4.1)
where © = (o, @, ,)” is the angular velocity of the body in projections onto the Ox, Oy and Oz axes; I(f) is the
principal inertia tensor in the Oxyz axes, which is assumed to be positive-definite and bounded by the matrixM =
M,, M{);DM,)T of torques generated by the action of the external forces and displacements of the moving masses
of the body.

As kinematic equations, we take the equations in Rodrigues—Hamilton parameters [14]
2i0 = —lla), - lz(ﬂg - A.3(.03 (42)

2).\] = }\.0(0] +XZ(03 —A.g(l)z a2 3)
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Coincidence of the bases OXYZ and Oxyz corresponds to the quaternions L = (1,0,0, 0) and L = (-1, 0, 0, 0).
We will solve the triaxial stabilization problem in the following formulation: it is required to find a torque M,
generated by a control system with delay, which ensures uniform asymptotic stability of the equilibrium position

0=0, £=(1,0,0,0) 4.3)

We will show that the solution of this problem is obtained by defining the torque M as
M = —R()o - OX(t - (1)), A=A, A0, A3)7, r(t) S hh>0 (4.4)

where o > 0 is an arbitrary number and R(¢) is a bounded matrix such that the matrix (2R(?) - i(t)) is positive-
definite.
Equations (4.1) may then be rewritten as

. — 0 -
(Io)+ o XxIw =-R(O)o - oA~ [ Ns)ds). (4.5)
~r(r)
If these equations are solved for e, the limit equations will be
» * * — 0
o ={uA (o) +a B’ (1)-aC OAW -~ | Ns)ds) (4.6)
-r'

where {w A*(f)w} are quadratic forms in w = (o, o, o,)" and B*(¢), C*(¢) are matrices such that det(C*(r)) =
¢ = const > 0. .

Let a denote the least eigenvalue of the matrix 2R(f) - I()). Let @ > 3ha. Then, for some ¢, we have a = hcy
+ 3ho.

We choose a Lyapunov functional in the form

V = ()T K0o(r) +20((1 - Ao ()2 + A3 (1) + A5 () + A5 (1) +
093 2 2

+ [ [ Za(@f (t +u) + 05t +u)+ 05 +u))duds
-hs

This functional is positive-definite, has an infinitely small upper limit at the point (4.3) and, by virtue of Eq.
(4.5) has a derivative

V<-ahe! (Hu()<0

The set {o,, (g o, = 0} contains only those solutions of Eqs (4.2) and (4.6) for which ,; = A =23 =0,k =
+1 or Ay = ~1. By Theorem 2.5, the equilibrium position (4.3) is uniformly asymptotically stable.

The problem of the uniaxial orienation of a rigid body by control torques
Consider a rigid body with a fixed point O. Let OXYZ be an inertial reference system and let Oxyz be a reference

system rigidly attached to the body; v is the angle of precession, 6 is the angle of nutation and ¢ is the angle of
proper rotation. The motion of the body may be described in terms of the Euler angles by the Lagrange equations

dfar) or _, _‘f_(g_]__al_u dfory or_, 47
dri\oy ) oy ¥V dr\ee) 98 " dr\op) o ¢ S

T= -;-(A(\jl sin@sin¢ +6cosq))2 + B(ysinBcos® — Bsin )’ +C(p+ \ilcose)2 )

We will define the control u = (u,, e, u“,)T in such a way as to guarantee stabilization of the Ox axis along the
OZ axis, that is, stabilization of the set of motions {¢ = 6 = 0, y= const, p = 6 = n/2}. We will show that the
problem is solved by a control of the form

uy=0 (4.8)
ug = k110~ k20 ~ asin @t - 1 (1)) cos(B(t ~ ry (1))
Uy = —kp10 — kgp® — acos(t ~ 7 (1))sin(8(z ~ r(1))

where || k; || is a positive-definite matrix, i is the least eigenvalue of this matrix and r,(r) are uniformly continuous
functions forf € RT, with 0 < r(¢) < h = const, 0 < a < p/2h.
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The limit equations for (4.7) have a similar form, with right-hand sides that are limiting values for (4.8).
Consider the Lyapunov functional

- 100 . -
V=T+a(1-sm<psme)+27 I ] qy82(0 + )+ 2k 200 +w)B(t + ) + koo (¢ +))duds
-hs

For the derivative of this function, we find that
V<s-W=0
0/ n I .
w=| (E—a)(e 0)+6%¢ +5)+ 0% + @2 (1 +5))ds
-h
The only solution of the limit equation (4.8) in the set {W* = 0} = {p= 0= 0} is

8=¢=0, (p=9=§, y = const.

By Theorem 2.5, we obtain stabilization of the Ox axis along the OZ axis, or asymptotic stability of the equilibrium

position

Y=0=0=0, g=0=7/2

with respect to (6, ¢, , ¢).

12.

13.
14.
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