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The asymptotic stability and instability of the trivial solution of a functional-differential equation of delay type relative to part 
of the variables are investigated using limit equations and a Lyapunov function whose derivative is sign-definite. The theorems 
thus obtained are used to solve the problem of stabilizing mechanical control systems with delayed feedback. As examples, solutions 
of problems of the uniaxial and triaxial stabilization of the rotational motion of a rigid body with a delay in the control system 
are presented. © 1999 Elsevier Science Ltd. All rights reserved. 

1. B A S I C  D E F I N I T I O N S .  L I M I T  E Q U A T I O N S .  

Suppose  R 'n and R p are linear real  spaces of  m- and p-vectors with norms l Y I and I z I, R~ is the linear 
real  space of  n-vectors  x = (Xl, x2, . . . ,  Xn) = (Yl, Y2, • • •, Ym, Zl, z2 . . . . .  Zp) = (y, z) with norm I xl = 
l Yl + I z I, n = m + p,  h > 0 is a real  number  and C (n) is the Banach space of  cont inuous functions 
q~: [-h,  0] ~ R n with no rm II ~o = sup (I ~¢(s)I, -h  ~< s ~< 0), C~4 m) =- {~(v~ E C (m) : II'¢:v~ II < H < + ~ }, 
-Ct m) = {~%) E C (m) : II ~%)tl ~< l) (and similarly for C~)). Put  ~o = (q~y),~Ofz)). For  a cont inuous function 
x : ]--~, +oo[ ~ / ~  and every t ~ R, the function xt ~ C (n) is defined by the equality xt(s) = x(t + s) for 
h < ~ s < . O .  

Consider  the following functional-differential  equat ion with finite delay 

~k(t) = f ( t ,x , ) ,  f i t ,0)  = 0 (1.1) 

where  f :  R ÷ × A ~ R", A = C~ m) × C ~) is a cont inuous mapping satisfying the z-continuability condit ion 
for  solutions of  Eq. (1.1), that  is: each solution of  Eq. (1.1) x = x(t, ct, q~) = x~(ct, ~o) = ~o is defined 
for all t >t a such that I Y (t, ~t, q~) I ~<//1 < H. This condition means that none of  the coordinates zj(t, ~, ~)  
will depar t  to infinity in a finite t ime [1]. 

Le t  us assume that  the r ight-hand side of  (1.1) also satisfies the following assumptions. 

Assum__ption 1.1. For  every pair  r, l, 0 < r < H, l > 0, an M = M(r, l) exists such that for  (t, q~) e R + 
× Cr × Ct 

If(t, ~p)l <~ M (1.2) 

With this assumption,  we can prove the following lemma [2, 3]. 

L e m m a  1.1. Suppose Assumption 1.1 is satisfied and let x = x(t, or, ~)  be a solution of  Eq. (1.1), defined 
and b o u n d e d  for  all t >I ~t - h. Then  the family of  functions {xt(a, ~o) • t I> a}  is precompact .  

Assumpt ion  1.2. The  funct ion f(t, ~p) satisfies a Lipschitz condit ion as a function of  q) in any compact  
set K C A, that  is, an l = I(K) exists such that, for any qh, ~2 ~ K 

If(t, ~P2) - f(t, qh)l ~< l I1~o 2 - -  ~plll (1.3) 

U n d e r  this condition, a solution of  Eq. (1.1) exists for  any initial point (et, q~) ~ R ÷ x Ax = x(t, ~t, ~o), 
and it is unique and cont inuous  with respect  to the initial data [4]. 

Assumpt ion  1.3. The  function f(t, ~)  is uniformly cont inuous over any set R + × K, where  K C A is 
an arbi t rary compact  subset of  A, so that VK C A, W > 0 3m = re(K), 38 = 8(e, K) > 0 such that  
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V (q,  ~01) , (t2, ~02) • R + x K, It2 - tll ~< 6, H q~2 - ~ot II 5, the following relat ion holds 

If(t2, ¢¢'2) - f(h,q~t)l < e 

U n d e r  these conditions, Eq. (1.1) is p recompact  in some space F of  cont inuous functions f: R ÷ × F 
R ~, where  F is some subset of  A that contains {xt(a, ¢¢), ~ e A, t I> a + h} for every solution x = 
x(t, a ,  q~) of  (1.1) [3]. 

Definition 1.1. A function f* • R + × F ---> R ~ is said to be a limit function for f if a sequence to ~ +oo 
exists such that {f(t + tn, q~)} is uniformly convergent  to if(t ,  ¢p) in F. The  equat ion 

/~(t) = f ' ( t ,  xt )  (1.4) 

is called a limit equat ion for (1.1). 
The  relat ionship between the solutions of  Eqs (1.1) and (1.4) is established by the following theo rem 

[2, 31. 

Theorem 1.1. Le t  f* : R + × F ~ R" be a limit function for f i n  F relative to a sequence tn ~ +0% and 
let {an e R ÷ } and {q~n • F} be sequences such that an ---> a e R ÷, q~o ~ F as n ---> ~.  Then,  if x = x(t, 
to + an, ¢Pn) is a solution of  Eq. (1.1) and x*(t, a ,  ~o) is a solution of the equation/~(t) = f*(t,  x/) defined 
for t e [a - h, 13[, the sequence of  functions x(to + t, to + a , ,  ~On) converges tox*( t ,  a ,  q~) uniformly in 
t ~ [a - h, y] for  every y < 13. 

2. A S Y M P T O T I C  S T A B I L I T Y  A N D  I N S T A B I L I T Y  T H E O R E M S  
R E L A T I V E  T O  P A R T  O F  T H E  V A R I A B L E S ,  ON T H E  A S S U M P T I O N  

T H A T  T H E  S O L U T I O N S  A R E  B O U N D E D  AS F U N C T I O N S  O F  
T H E  N O N - C O N T R O L L A B L E  C O O R D I N A T E S  

We will investigate the problem of  the stability of  Eq. (1.1) relative to part  of  the variables (xl . . . . .  
Xm) = (Yl . . . . .  Ym)g using limit equat ions and limit functions. 

L et V(t, ~o) : R × A ~ R be some functional defined and jointly cont inuous with respect  to all 
its a rguments  [3]. Le t  x = x(t, a ,  q~) be some solution of  Eq. (1.1) defined for all t i> a - h. Then,  putt ing 
V(t) = V(t, x/(a, ~o)), we can define the upper  right-hand derivative 

¢(~q~)- -  lim s u p l ( v ( a + h ) -  g (a ) )  
h~o + h 

Let  us assume that  the derivative l/satisfies the following est imate 

¢(t,~o).~-W(t,~o)~O, V(t,q~)~ R × A  

where  the cont inuous  function W = W(t, ~) is bounded  and uniformly cont inuous on every set 
R + x K, where  K is a compact  subset of  A. 

Definition 2.1. Let  tn ---> +oo be some sequence. For each t • R and c • R, we define a set V~l(t, c) C A 
as follows: the point  q~ • Vo~-l(t, c) if a sequence {q~o • F, ~o --> q~} exists such that limn_.+~V(t + tn, 
~.) = c .  

As in the case of  f(t, (p), subject to the appropriate  condition for W(t, ~o), the family of  translates { W~(t, 
~o), x e R + } is p recompact  in a certain functional space of continuous functionals F = {G : R × F ~ R} 
with metr izable  compac t  open  topology. 

Definition 2.2. A functional  W* • F6  is called a limit functional for W i f  a sequence t, ---> + ~  exists 
such that {I4A")(t, q~) = W(tn + t, ~)} converges to W*(t, ¢p) inF6.  When that is the case, the set V£1(t, c) 
defined by the same sequence tn ---> +oo is defined as that corresponding to W*. 

Le t  x = x(t, a ,  ~o) be a solution of  Eq. (1.1) defined for all t />  a - h, xt(n)(a, ~o) = x(to + s, a ,  q~) 
( -h  ~< s ~< 0). The  positive limit set f~+(xt(a, q~)) in the space CH is the set f~+ = {q~* e CH: 3t, --+ 
+0% n ---> 0% x~n)(a, q~) ---> q~* as n ---> ~}.  

T h e  following results of  the localization t~+(xt(a, q~)) exist, easily deducible f rom [2, 3]. 

Theorem 2.1. Suppose that 
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1. V(t, ~) : R ÷ × A ~ R is a continuous functional, having a lower bound in every compact set K C 
A, that is, V(t, ~) >1 m(K) V(t, ~o) ~ R + × K, and for its derivative we have 

(/(t,q~)<~-W(t,q~)<~O, V(t,q~) ~ R + × A 

2. x = x(t, ct, q0 is a solution of Eq. (1.1) such that I y(t, ct, ~) [ ~< x < H, [ z(t, et ~o) I ~<x~ < +o~ for 
al l t  ~ c t - h .  

Then c = Co/> m exists such that, for every limit point q~* ~ f2+(xt(a, ~)), a limit pair (t'*, W*) 
with V£~t, c) and a solution x*(t, 0, q~*) of the equation/~(t) = f*(t, x~) exist such that 
R} C f~ (xt(ct, ~ ) ) a n d  {x*(0, q~*) : ,  ~ R} C {vo~l(,, c ) : c  = Co = const} O {W*(t, q~) {x~):  

~ * ) : t  ~ 

Corollary 2.1. If, under the conditions of Theorem 2.1, it is also assumed that for every Co > cl a 
certain limit pair (f*, W*) with Vo~-l(t, c) exists such that the set {vzl( t ,  c): c = Co = const > cl} n 
{W*(t, ~) = 0} does not contain solutions of the equation x(t) = f*(t, xt), then, in addition to the assertion 
of Theorem 2.1, it is also true that 

lim V(t, xs(ct, q0) = Co = const<~ct. 
t .-.--) 4.oo 

These results enable us to prove the following theorems, in which co: R + ~ R + is a Hahn-type function 
[1]. 

Theorem 2.2. Suppose that: 
1. the solutions of Eq. (1.1) in some neighbourhood N of the point x = 0 are bounded as functions 

of z; 
2. a continuous functional V: R + × A ~ R + exists such that 

V(t,O) =- O, V(t,q~)~c0,(I q~(y)(0)l), (/(t,~o)~-W(t,~p)<~O 

for all (t, q0 ~ R÷ × A; 
3. for every limit pair (f*, W*) with set V~l(t, c), the set {Vo~l(t, c) : c = const/> 0} n {W*(t, ~o) = 

0} does not contain solutions of the equation/t(t) = if(t, xt) other than the solutions x = x(t) = (y(t), 
z(t)) such that y = 0. 

Then the solution x = 0 of Eq. (1.1) is asymptoticallyy-stable. 

Proof. Condition 2 of the theorem implies that the trivial solution of Eq. (1.1) is y-stable [5]. 
Consequently, for every number Hi < H a 6 = 5(H1 c0 > 0 exists such that if II ~ II ~< 6, then I Y I(t, et, 
~o) 1 ~ Ht, Vt ~ ct. Hence, by Condition 1 of the theorem, it follows that every solution x = x(t, (x, ~0) 
of Eq. (1.1) in the neighbourhood N n {11 x II ~< 8} will be such that 

ly(t,o~,~p)l~H t < H, Iz(t ,~,q0t~l<+oo, Vt>~o~ 

Then, applying Theorem 2.1, we deduce from Conditions 2 and 3 that limt_~+~(t, ct, ~) = 0. The 
theorem is proved. 

Using Corollary 2.1, we prove the following. 

Theorem 2.3. Suppose that: 
1. Conditions 1 and 2 of Theorem 2.2 are satisfied; 
2. a limit pair (f*, W*) with set v£l(t, c) exists such that, for every Co > 0, the set {V£~(t, c) : c = 

co = const > 0} O {W*(t, q~) = 0} does not contain solutions of the equation/~(t) = f*(t, xt). 
Then the solution x = 0 of Eq. (1.1) isy-stable uniformly in q). 

Proof. As in the proof of Theorem 2.2, we can deduce that for every solution x = x(t, a, q0 of Eq. 
(1.1) defined for all t ~ ct in the neighbourhood N n (11 x II ~< 8}, it is true that I y(t, a, ~o) [ ~< r < H, 
I z(t, ct, ~) I<~ l < +oo, Vt >/o~. 

It now follows from Condition 2 of the theorem, according to Corollary 2.1, that along every solution 
x(t, ct, ~) in the domain N n {11 x IL ~<8} we have: V(t, xt (c~, ~)) decreases monotonically and tends to 
zero as t ~ +o0. 

Suppose the domain A1 C A is contained in the stability domain of x = 0 for an arbitrarily given 
et/> 0. Let I.t > 0 be an arbitrarily small number. It can be shown, on the basis of Assumption 1.1, that 
the set K(a, c~ + h) = {x~+h(ct, ~) : ~ ~ A1} is compact. The property V(t, xt(ot, qO) ~ O, t -~ +oo, the 
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continuity of V and the continuous dependence of the solutions on the initial data imply the existence 
of a number T = T(e, c~ + h) > 0 such that 

V(~ + h + T, xa+~+r(~ + h, q~)) < c01 (e) 

for all ~ ~ K(ct, a + h). Consequently, it follows from the definition of the set K(ct, ~t + h) and Condition 
1 of the theorem that, for all t /> c~ + h + T, q~ ~ A, we have V(t, xt(ct, q~)) < COl(e). Thusyt(ct, ~o) I < ~, 
Vt I> ¢t. The theorem is proved. 

Theorem 2.4. Suppose that: 
1. the solutions of Eq. (1.1) in some neighbourhood N of the point x = 0 are stable relative to z; 
2. a continuous functional V: R ÷ × A ---> [-m, +~) ,  having a lower band, exists which, in any small 

neighbourhood of x = 0, takes negative values such that 

V(t,O) - O, (:(t,q~)-~-W(t,q~)<-O 

for all t e R +, q~ e A; 
3. for every Co < 0 a limit pair (f*, 14:*) with set V£l(t, c) exists such that the set {V£l(t, c): c = Co} 
{W*(t, q~) = 0} does-not contain solutions of the equation x(t) = f*(t, xt). 
Then the solution x = 0 of Eq. (1.1) is y-stable. 

Proof. Let x = x(t, c~, ~o) be a solution of Eq. (1.1) with initial point (a, q~), ~ ~ N, V(ct, q~) < 0. We 
will show that the solution x(t, a, ~o) is such that, for any H1, 0 </-/1 < H, a t* > Gt exists for which 
I y(t*, ct, q~) [ = H1. 

Suppose the contrary: for the given solution, I y(t, ct, ~o) I < Hi for all t I> ct. Then, by Condition 1 
of the theorem, ] z(t, a, ~) I ~< l < +~.  By Condition 2, a number Co < 0 exists such that limt~o V(t, 
xt(a, ~)) = Co < 0. By Theorem 2.1, a solution x*(t) C f2+(xt(ct, q~)) of the equation x(t) = f*(t, x/) 
exists a solution such that 

x" ( t ) c  lV:. l( t ,c):c=co}n{W* (t,q~)=O}, Vt E R 

This contradicts Condition 2, proving the theorem. 

Theorem 2.5. Suppose that 
1. the solutions of Eq. (1.1) in some neighbourhood N of the point x = 0 are uniformly bounded 

with respect to z; 
2. a continuous functional V: R ÷ x A ---> R ÷ exists, bounded and uniformly continuous in every set 

R + x K (K C A a compact set), such that 

o~ l (I q~(y)(0)I)-:-V(t, ~)-~-o)2 (11 q~ II), V(t,O) --- 0 

~'(t, ~o ):-.- W(t, q~)<- O, (t, q~ ) E R + x A 

3. every limit triple (f*, V*, IV*) is such that the set {V*(t, q~) = c > 0} fq {W*(t, q~) = 0} does not 
contain solutions of the equation x(t) = f*(t, x,). 

Then the solution x = 0 of Eq. (1.1) is uniformly asymptoticallyy-stable. 

Proof. It follows from Condition 2 of the theorem that the trivial solution of Eq. (1.1) is uniformly 
y-stable [4]. Under those conditions, every solution x = x(t, ~, q~) of Eq. (1.1) in the domain A0 = 
ill ,p I) ~< H0 = co~-1(o~1(H1)), H1 < H} is bounded as a function of y, that is l y(t, c~ q~) [ ~< H1 < H for 
all t/> a. It follows from Condition 1 of the theorem that the solutions of Eq. (1.1) in the neighbourhood 
No = N A A0 of the point x = 0 are such that 

I y(t,~, q)) I~H I < H,I z ( t , a ,~)  I~l < +oo, Vt~>ct 

As in Theorem 2.3, one deduces that, along every solution x = x(t, a, q~) in No, the functional 
V(t, xt(ct, ~o)) decreases monotonically, tending to zero as t ---> +~.  

We will show that V(t, x/(ct, q0) as t ---> +o0 uniformly with respect to (a, q~) ~ R ÷ × No. This property, 
as follows from Condition 2 of the theorem, will be sufficient to complete the proof. 

Suppose the contrary, namely: e0 > 0 exists such that, for an arbitrary sequence tg ---> +~ ,  there is 
sequence (ctk, q~k) e R~" x No for which 
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V(et, + t  k, xc,,÷,, ((x,,~P,))~eo 

Under  these conditions, obviously, the following inequality is true for t ~ [ak, otk + tk] 

V(t,x,(cq,~ok ))~eo (2.1) 

Define f3k = ~k k + tk/2. We may assume, without loss of generality, that the sequences {t(k)(t, ~o) = 
f(13k + t, ~0)}, {I, ~ )(t, ~0)}, {w(k)(t, ~o)} converge to f*(t, ~o), V*(t, ~o), W*(t, ~o), respectively. By Theorem 
1.1, the sequence X(13k + t, 15k, ~k), ~k = Xl3k (Ctk, ~,) converges uniformly in t ~ [0, 7] to a solution 
x* = x*(t, 0, q )  of the equation x(t) = f*(t, xt). 

By (2.1), V*(t, ~0) satisfies the estimate 

V* (t,x~ (t,O, O~)) >~ e o >0 (2.2) 

for all t I> O , ,  ~ C~'~) x Cl (p). 
On the other hand, it follows from Condition 2 of the theorem that 

t+~k 

v(t+l~k,x,+~, (l~k,%))- v(f~, ,%, (~ ,%) )  <- - f W(s, x A ~ k , % ) ) d s  = 

l 
= -~ W ( s  + ~i,,Xs+13 k (~k,~bk))ds <~ O, t >10 

o 

Letting k ~ + ~  in the last relationship, we obtain 

t 

v (t ,x ,(0, , ) )-v (o,o)-~-J w (s,x,(0,,))ds~0 
0 

Hence it follows that the function V*(t, ~) decreases monotonically along the solution x* = x*(t, 0, 
~)  of the equation x = f*(t, xt) at the same time satisfying inequality (2.1). 

It follows from Condition 3 of the theorem that every limit triple for (f*, V*, W*), say (f**, V**, W**), 
is such that the set {V**(t, ~) = c = const > 0} N {W**(t, ~) = 0} does not contain solutions of the 
equation :~ = f ** ( t ,  xt). Consequently, V*(t, x~(0, ~))  decreases monotonically, tending to zero as 
t ~ +oo. This contradicts inequality (2.2), which proves the theorem. 

The results of this section develop and generalize the results of [1-11]. 

3. S T A B I L I Z A T I O N  O F  M E C H A N I C A L  C O N T R O L  S Y S T E M S  

Consider a mechanical control system obeying holonomic stationary constraints and described by n 
generalized coordinates ql, • • •, qn, which are subject to dissipative forces in addition to control forces 
u = (ul,  u2 . . . . .  Un), so that the motion of the system is described by the equations 

( 1. ) d ( aT~ aT - ~ fq[tj(t) T = - ~  aij(q)qiq j 
 LE)-E j__, 2,_-, (3.1) 

a l l  
u i = - ~ q i ( q l ( t - ~ l ( t ) )  ..... q , ( t - ~ n ( t ) )  (3.2) 

where H = H(q) is a positive-definite function such that 

n(0) = 0, 

the functions rq(t) are bounded, 0 < rij <~ h, and uniformly continuous for t ~ R ÷. 

where T is the kinetic energy of the system and II f II is a positive-definite matrix. 
We will consider the problem of stabilizing the equilibrium position/1 = q = 0 of system (3.1) with 

respect to the coordinates, assuming the presence of delayed feedback. We will show that this problem 
is solved by a control u of the form 
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A limit system for (3.1) has the analogous form 

d ( /)T / /}T aFl ( t_ r i l ( t ) )  ..... qn(t-rTn(t))- ~ fq~Tj(t) (3.3) 

Let us assume that I1 f J[ is a positive-definite matrix. Let ~t be the least eigenvalue of  the matrix [I f I I, 
and let 

maxi ~2n I< ~ 

We take the following Lyapunov functional 

O 0  n 
V( t ,q , ,q , )=  T(qn(t ) ..... q . ( t ) )+ l'I(ql(t ) ..... q . ( t ) )+ I I ~. f i jqj(t  +u)qi( t  +u)duds  

- h  s i , j= l  

This functional will obviously satisfy the conditions 

COl o q<,),)+ 0 , :  v co, (llq,ll)+  o=(ll,i,H) 

For the derivative f 'we  obtain the estimate 

f ' ( t , ~ l , , q , ) ~ < - . f - Y .  -Co n if f( t)+q~(t+s))ds<<-O 
-h 2 i=1 

(3.4) 

We put the functional W(t, (It) equal to the quantity between the inequality signs in (3.4). Then the 
set {W*(t, tit) = 0} -- {(I(t) - 0}. 

Substituting tl = 0 into Eq. (3.3), we deduce that the set {W*(t, (It) = 0} does not contain solutions 
of  Eq. (3.3) other than (I = q = 0. 

Using Theorem 2.5, we see that the control (3.2) stabilizes the equilibrium position/! = q = 0, ensuring 
uniform asymptotic stability. 

In a similar way, it can be shown that if qm+l . . . . .  qn are angular coordinates (mod 2n), then the 
control (3.2), where FI = Fl(q) is a positive-definite function of ql , .  • . ,  qm and 

1"1(0)=0~ /aF l /2  ~ e~ '~ q~) 
i=l [,~qi) k i = l  

stabilizes the equilibrium position (i = q = 0 relative to ql . . . . .  q,, ql . . . . .  qm. 
These results develop those obtained in [9, 12, 13]. 

4. E X A M P L E S  

Synthesis of  a control torque ensuring asymptotic stability of a given triaxial orientation of  a rigid body, with variable 
moments of  inertia, rotating about a fixed point 

Let OXYZ be a fixed reference system and let Oxyz be a reference system rigidly attached to the body, where 
the axes Ox, Oy and Oz maintain fixed directions in the body and are chosen from the problem of the orientation 
of Oxyz relative to OXYZ. Rotational motion of the body about its centre of mass may be described by the Euler 
dynamical equations 

(Jto) +o~ x lto = M (4.1) 

T where co --- (cox, coy, O~z) is the angular velocity of the body in projections onto the Ox, Oy and Oz axes; I(t) is the 
principal inertia tensor in the Oxyz axes, which is assumed to be positive-definite and bounded by the matrix M -- 

7" (Mx, My, Mz) of torques generated by the action of the external forces and displacements of the moving masses 
of the body. 

As kinematic equations, we take the equations in Rodrigues-Hamiiton parameters [14] 

2~. 0 = -~,101 - ~,2(02 - ~k3(jo 3 (4 .2)  

2~ j  = ~.0(o I + ~,2~3 - ~,3(02 (1 2 3)  
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Coincidence of the bases OXYZ and Oxyz corresponds to the quaternions L = (1, 0, 0, 0) and L = (-1,  0, 0, 0). 
We will solve the triaxial stabilization problem in the following formulation: it is required to find a torque M, 

genera ted  by a control  system with delay, which ensures uniform asymptotic stability of  the equilibrium posit ion 

¢o=0, L =  (1 ,0 ,0 ,0 )  (4.3) 

We will show that  the solution of this problem is obta ined by defining the torque M as 

M = - R ( t ) ~  - otk(t - r(t)), k = (~'1 ,~'2,x3)T, r(t) ~ h,h > 0 (4.4) 

where ct > 0 is an arbitrary number  and R(t) is a bounded matrix such that the matrix (2R(t) - i(t)) is positive- 
definite. 

Equat ions  (4.1) may then be rewritten as 

0 . 

(le~) + to X Ire = - R ( t ) ~  - Ot(k(t)- J k(s)ds). (4.5) 
-r(t) 

If  these equat ions are solved for & the limit equations will be 

0 

,b = {¢o TA* (t)¢ol + to TB* (t) - ¢C* ( t ) (~ ( t ) -  J" k(s)ds) (4.6) 
-r*(t) 

where {¢orA*(t)¢o} are quadrat ic  forms in oJ = (~0~, O~y, o~) T and B*(t), C*(t) are matrices such that  de t (C*( t ) ) />  
c = const > 0. 

Let  a denote  the least eigenvalue of the matrix (2R(t) - i(t)). Let a > 3hot. Then, for some c0, we have a = hco 
+ 3hct. 

We choose a Lyapunov functional in the form 

V = to(t) r l(tRo(t) + 2c¢((! - ~.0 (t)) 2 + ~2 (t) + ~2 (t) + ~2 (t)) + 

° ° 3 s  + ~ ~ a(o~2(t+u)+o)~(t+u)+o~(t+u)) duds 
- h  

This functional is positive-definite, has an infinitely small upper limit at the point (4.3) and, by virtue of Eq. 
(4.5) has a derivative 

~' ~ -Othto T ( t )to( t ) <~ 0 

The set {COx, o~, COz = 0} contains only those solutions of Eqs (4.2) and (4.6) for which ~,1 = L2 = ;~3 = 0, ~0 = 
+1 or  ;q~ = -1 .  By Theorem 2.5, the equilibrium position (4.3) is uniformly asymptotically stable. 

The problem of  the uniaxial orienation of  a rigid body by control torques 
Consider  a rigid body with a fixed point  O. Let  OXYZ be an inertial reference system and let Oxyz be a reference 
system rigidly a t tached to the body; ~, is the angle of precession, 0 is the angle of nutation and q~ is the angle of 
p roper  rotation. The motion of the body may be described in terms of the Euler  angles by the Lagrange equations 

dlaT ) aT dlaT] aT d(ar) aT (4.7) 

T = I ( A ( ~  sin0sin ~p + 0cosq~) 2 + B(~/sin Ocos~0- (~sin q~) 2 + C(~o + ~ cosO) 2) 

We will define the control  u = (u v, u0, u~) T in such a way as to guarantee stabilization of the Ox axis along the 
O Z  axis, that  is, stabilization of the set of motions {+ = 0 = 0, + = const, q~ = 0 = n/2}. We will show that  the 
problem is solved by a control  of the form 

u v = 0 (4.8) 

u o = - k  I i1~- k12~0 - a sin ¢p(t - r 1 (t)) cos(0(t - r 2 (t)) 

uq~ = - k 2 1 0  - k22~0 - a c o s c p ( t  - ~ ( t ) ) s i n ( 0 ( t  - r2 ( t ) )  

where H k0 II is a positive-definite matrix, la is the least eigenvalue of this matrix and ri(t) are uniformly continuous 
functions for t ~ R +, with 0 < ri(t) <~ h = const, 0 < a < la/2h. 
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The limit equat ions for (4.7) have a similar form, with right-hand sides that  are limiting values for (4.8). 
Consider  the Lyapunov functional 

V= T+o t ( l _ s in tp s in0 )+  17" ~Ol. (kllO2(t + u)+ 2k12(P(t + u)O(t + u)+ k22(p2(t + u))duds 
2h -h "~ 

For  the derivative of  this function, we find that 

W= I - a  02(t)+O2(t+s)+q)(t)2+(p2(t+s))ds 
-h 

The only solution of the limit equation (4.8) in the set {W* = 0} = {~ = ~1 = 0} is 

'R ~/= c o n s t .  d=~,=0, ~o=o=~, 

By Theorem 2.5, we obtain stabilization of the Ox axis along the OZ axis, or asymptotic stability of the equilibrium 
posit ion 

with respect  to (0, ~o, 0, q~). 

~=0=(p=0, (p=e=n/2 
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